Quick Reference Guide to Urine Dipstick Analysis and Functional Urinalysis

Dicken Weatherby, N.D.

"The Perfect Companion to My In-Office Lab Testing System Reference Manual"

Urine Dipstick Analysis and Microscopy

Dicken Weatherby, N.D.

......

Bear Mountain Publishing • Jacksonville, OR

Urine Dipstick Analysis and Microscopy

© 2002 BY RICHARD WEATHERBY, N.D. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system without written permission from the authors, except for the inclusion of quotations in a review.

Bear Mountain Publishing 1-541-899-1522

Warning - Disclaimer

Bear Mountain Publishing has designed this book to provide information in regard to the subject matter covered. It is sold with the understanding that the publisher and the authors are not liable for the misconception or misuse of information provided. The purpose of this book is to educate. It is not meant to be a comprehensive source for diagnostic testing, and is not intended as a substitute for medical diagnosis or treatment, or intended as a substitute for medical counseling. Information contained in this book should not be construed as a claim or representation that any treatment, process or interpretation mentioned constitutes a cure, palliative, or ameliorative. The interpretation is intended to supplement the practitioner's knowledge of their patient. It should be considered as adjunctive support to other diagnostic medical procedures.

Printed in the United States of America

How to Order

For mail orders call Bear Mountain Publishing in the United States at 541-899-1522, e-mail **info@BloodChemistryAnalysis.com** or online at **http://www.BloodChemistryAnalysis.com**

Urine Specific Gravity

Ranges:	Normal Value: 1.015	High value: >1.015	Low value: <1.015
---------	---------------------	--------------------	-------------------

Clinical implications

HIGH

Clinical Implication	Additional information	
Abnormal solutes in urine	An ↑ S.G. with ↑ or normal urine volume. Need to check dipstick to confirm	
	presence of protein or glucose.	
Adrenal insufficiency	A high urinary chloride (1-13 drops of reagent) and a high specific gravity is an	
	indication of adrenal insufficiency.	
Increased mineral loss	A high specific gravity may be due to increased mineral solutes in the urine.	
Diabetes mellitus	Large amounts of glucose or protein ↑ the S.G. to > 1.050.	
	Note: Every 1% of glucose in the urine will ↑ the S.G. 0.004	
Dehydration	Excess water loss from sweating, fever, vomiting	
Other causes of S.G. increase	Hepatic disease, Congestive heart failure, Protein malnutrition, collagen vascular	
	disease	

LOW

Clinical Implication	Additional information	
Congested lymphatic system	♦ S.G. and \checkmark or normal urine volume indicates the kidney is having difficulty concentrating the urine and cleansing the blood due to a congested lymphatic system which can cause: swollen glands, allergy symptoms, low back pain, headaches and nausea. Symptoms worsen in women during menses and pregnancy, and may lead to vomiting.	
Early chronic renal disease	V S.G. and ↑ volume	
Diabetes insipidus	✓ S.G. and ↑↑ volume	
Kidney inflammation and		
infection	Glomerulonephritis (inflammation without infection)	
	Pyelonephritis (inflammation with infection)	

Urine Bilirubin

Normal values: Zero

Clinical implications

Even trace amounts of urinary bilirubin are abnormal and therefore further testing is indicated.

Positive reading

Clinical Implication	Additional information	
Gall bladder dysfunction	Biliary stasis or gallstones. Further testing should be performed to assess this situation.	
Protein maldigestion	This can interfere with the transport of bilirubin into the small intestine.	
Oxidative stress	Excess red blood cell destruction, leading to increased bilirubin levels, may be caused by increased oxidative stress	
Liver detox stress	Consider phase II liver detoxification problems	
Liver dysfunction (Inflammation or infection causing conjugation problems)	 Infectious hepatitis Cirrhosis of the liver Metastatic disease of the liver Congestive heart failure 	 Gilbert's disease Jaundice Other liver diseases caused by toxic or infectious agents

Note: Urine bilirubin is negative in hemolytic diseases

More comprehensive diagnostic information can be obtained by comparing urine bilirubin with urine urobilinogen levels:

Bilirubin	Urobilinogen	Clinical Implication
↑	↑	Liver dysfunction, hepatocellular or partial obstruction
↑	Normal	Biliary stasis or gall stones
Negative	↑	Hemolytic
Negative	Normal	Negative

Urine Blood or Hemoglobin

Normal levels: None

Clinical implications Hematuria Non-Hemolyzed

	Non nemoryzea	
Clinical Implication	Additional information	
Conditions associated with hematuria	Lower urinary tract infectionsKidney stones	
	HypertensionAllergies	
	Urinary tract or kidney cancer	
	Glomerular infection or inflammation	
	• Lupus	
	Heavy smokers	
	Trauma	
	Hemolyzed	
Oxidative stress	Oxidation and breakdown of red blood cells causes an increase in hemolysed blood. Check Oxidata test.	
Other conditions	Liver pathology	

other conditions	Liver pathologyAllergies

Urine Color

Normal values: The color of the urine is straw to amber

Color of Urine	Clinical I	mplications
Colorless	 Large fluid intake Diabetes insipidus Untreated diabetes mellitus 	 Alcohol ingestion Severe iron deficiency Chronic interstitial nephritis
Orange-colored	 Concentrated urine (inadequate fluid intake, excessive fluid loss, fever) Bile Drugs (pyridium, rifampin, aco- gantrisin, furoxone, dilantin) 	 Diet (carrot juice, carotenes, riboflavin, food dyes) Uric acid crystals
Brownish color or greenish yellow	 Bilirubin in urine Biliverdin (oxidation of bilirubin on star indican, pseudomonas infection 	nding), drugs (methylene blue, elavil),
Red (straw to port wine)	 Blood, hemoglobin, or myoglobin, Porphyria (port wine color), Drugs: phenophthaleins, dorbane (laxative), 	 Diet (beets, blackberries), Herbs: cascara, senna, Aniline dyes
Brown	 Blood (acid hematin), Bilirubin and other bile pigments (yellow-brown to yellow green). Urobilinogen, Melanin (melanogin conversion by exposure to light in multiple myeloma, melanotic tumor, addison's disease), 	 Indican, Phenols, Drugs (flagyl, nitrofurantoin, I-dopa, methyldopa, metronidazole, sulfonamides), lysol poisoning (brown-black), Rhubarb
Blue hue	Food dyesMedication	Pseudomonas infectionSome porphyries
Green	Pseudomonas infection	· · · ·

Urine Glucose

Normal value: Negative

Cli	nical implications	HIGH
Clinical Implication	Additional information	
Glycosuria with high blood	 Diabetes mellitus (also ↑ S.G.) 	4. Extreme emotional stress
sugars	2. Endocrine diseases	5. Obesity
_	3. Infections	6. Diabetes insipidus
Glycosuria without a high blood	1. Renal tubule disease (lowered renal	4. Fanconi's syndrome (amino acid
sugar	threshold)	reabsorption defect)
	2. Pregnancy	5. Inflammatory renal disease
	3. Heavy metal poisoning	

Urine Ketones

Normal value: Negative

Clinic	cal implications	HIGH (Ketosis)	
Low carbohydrate, & high	Ketones often get produced in these types of diets due to the lack of carbohydrate		
fat/protein diets	consumed (Zone and Atkins type diets)		
Liver dysfunction	Ketosis often occurs with a decreased liver glycogen. There may also be adrenal		
	hypofunction, as cortisol is needed to stimulate the liver to release glycogen.		
Dietary conditions	1. Increased fat intake or inability to	4. Anorexia	
	metabolize fats	5. Increased protein intake	
	2. Starvation and fasting		
	3. Prolonged vomiting		
Carbohydrate maldigestion	This is especially true if the patient is eating carbohydrates and there are ketones in		
	the urine		
Kidney disease or kidney failure	Renal glycosuria		
Blood sugar abnormalities	1. Diabetic acidosis	2. Severe hypoglycemia	
Dehydration	Kidneys are unable to eliminate ketones efficiently		
Increased metabolic states	1. Hyperthyroidism	3. Pregnancy or lactation	
	2. Fever		

Urine Leukocyte Esterase

Normal values: Ze	ero. A color change occurs with	> 5 WBCs/high powered field
	5	5 1

CI	inical implications	Positive reading
Infection or inflammation	Intestinal inflammation	Prostatitis
	Pyelonephritis (acute or chronic)	Kidney stones
	Cystitis or Urethritis	Acute glomerulonephritis
Other causes for the presence	 retained foreign body 	Fever
of leukocyte esterase	Dehydration	Stress

Urine Nitrites

Normal value: Negative for bacteria

CI	inical implications	Positive reading
Bacteriauria	A positive nitrite test indicates	the presence of bacteria in the urine, suggesting a
		st does not confirm an infection, so further testing in the n of urine and urine culture needs to be performed.
	form of microscopic evaluatio	n of urine and urine culture needs to be performed.

 \uparrow Nitrites along with an \uparrow Leukocyte esterase = infection

Urine Odor

Normal values: Urine is normally odorless

Ammonia/fetid	Presence of bacterial overgrowth Loss of alkaline buffers in the body		
Sweetish, brown, frothy	 Presence of bile (bile duct obstruction) 		
Sweet	Look for sugar problems Diabetes		
	Biliary problems		
Fruity and sweet	Ketoneuria		
Foul	Fecal contamination, recto-urethral fistula		
Mousy, musty	Phenylketonuria		
Maple syrup	Maple syrup urine disease		
Any strong, unusual, persistent	Maybe herbs or medications		
odor	Metabolic disorders		

Urine Protein

Normal Ranges: Negative or trace

Proteinuria

Glomerular damage	Proteinuria is usually the result of an increased glomerular filtration rate			
Renal diseases	 Nephritis/glomerulonephritis, Nephrosis, Malignant hypertension, 	Polycystic kidneys,Chronic urinary tract obstruction		
Non-renal diseases	 Allergies Fever, Acute infection, Leukemia/multiple myeloma 	 Toxemia Diabetes mellitus SLE 		
▲ Protein and ▲ Leukocytes	Usually an infection at some level in the	Usually an infection at some level in the urinary tract		

<u>Urine Turbidity or Appearance</u> <u>Normal values:</u> Fresh urine is clear to slightly hazy

Hazy	 Cooling of the sample, Ph change, 	3. RBC's
Cloudy urine- unable to see through the sample	 Amorphous sediment or amorphous crystals, depending on urine ph (phosphates with alkaline urine, urates with acidic urine) Pus, with WBC count > 200 cells / mm3 Blood, with RBC count > 500 cells / mm3 Epithelial cells Bacteria Fat - milky appearance 	 Chylomicrons - creamy color - obstruction of lymph vessels by parasites, thoracic duct obstruction, trauma, or tumor Conjugated bilirubin - parenchymal liver disease, biliary tract obstruction Urobilinogen - parenchymal liver disease, hemolytic disease Oxalic or glycolic acids Mucus

Urine Urobilinogen

Normal Ranges: Trace

HIGH

		пюп		
Clinical	Implication	Additio	nal information	
Increased destruction of blood		Hemolytic anemia	 A Xenotoxins 	
cells		Pernicious anemia	Infections	
		Malaria	 A Oxidative stress 	
Hemorrhage in	to the tissues	Pulmonary infarct	Excessive bruising	
Reduced conju bilirubin by the Toxins in the	liver	↑ Urobilinogen is a sign that the liver is	s not functioning very well	
Hepatic damage as a result of:		 Gall bladder disease- biliary obstruction Cirrhosis 	Acute hepatitis	
	itions that affect			
blood break do	own			
		LOW		
Clinical	Implication	Additional information		
Anything that p	prevents bilirubin	Gall stones	Severe inflammation of biliary ducts	
excretion into t	the intestines	Biliary stasis	Cancer of the head of the pancreas	
Antibiotic thera	ару	Antibiotics wipe out the normal digestive flora which may prevent the formation of urobilinogen from bilirubin		
Interfering Fac	<u>tors:</u> Diurnal varia	ation: Peak excretion occurs from noon t	to 4:00 PM	
More comprehe	More comprehensive diagnostic information can be obtained by comparing urine urobilinogen with urine bilirubin leve			
Bilirubin	Urobilinogen	Clinical Implication		
↑	^	Liver dysfunction, hepatocellular or partial obstruction		
^	Normal	Biliary stasis or gall stones		
Negative	^	Hemolytic		
Negative	Normal	Negative		

Urine Volume

Ranges for a 24-hour sample:

Normal volume:	Polyuria:	Oliguria:
800-2000ml	> 2400ml	<800ml
Abnormal solutes:	Poor kidney conc.:	The average value:
>1800ml with S.G.>1.020	<1400ml with S.G.<1.020	1500 ml.

HIGH (>2400ml)

Clinical Implication	Additional information		
Eating a junk food diet	Junk food diets or Standard American Diets can have a diuretic effect on then body		
	causing a mild polyuria		
Ingested diuretics	Taking of diuretic medications and the co	onsumption of tea, coffee, soda, alcohol etc.	
	can cause polyuria		
Other functional problems	1. Allergies 2. Underactive adrenals		
Polyuria- with ↑ BUN and	1. Diabetic ketoacidosis,	2. Partial obstruction of urinary tract	
creatinine levels			
Polyuria with normal BUN and	1. Diabetes mellitus	3. Certain tumors of brain and spinal	
creatinine levels	2. Diabetes insipidus	cord	

LOW (<800ml)

Clinical Implication	Additional information			
Renal causes	1. Renal ischemia 3. Renal disease caused by toxic a			
	2. Glomerulonephritis and nephritis			
Dehydration	Cause by prolonged vomiting, diarrhea or excess sweating			
Other causes of oliguria	Over active adrenals, edema, recovering from fever, urinary tract obstruction, cardiac insufficiency			

Urinary Microscopy

Discussion

Urine microscopy is performed on the sediment of urine that has been centrifuged. The sediment is evaluated for cellular elements (red and white blood cells and epithelial cells), casts, crystals and bacteria which might originate from anywhere in the genitourinary tract.

When would you run this test?

1. To investigate and further evaluate positive findings from the Urine reagent dipstick testing

	Discussion	Normal	Clinical implications	Interfering factors
RBCs	RBCs occasionally can be found in the urine. Persistent findings of even small amounts of erythrocytes should be investigated because they come from the kidney and may signal serious renal dysfunction. They are usually diagnostic for glomerular diseases.	0-2/HPF normal >2 is abnormal and needs to be investigated	 Renal or systemic disease Trauma to kidneys Kidney stones Pyelonephritis Cystitis Prostatitis 	Alkaline urine hemolyzes red blood cells Heavy smokers have small amounts of RBCs in urine Menstruation Strenuous exercise
Red cell casts	Red cell casts indicate acute inflammatory or vascular disorders in the glomerulus. Their presence in the urine may be the only manifestation of certain diseases.	Zero casts	 Acute glomerulonephritis (GN) Associated with SLE 	May appear after strenuous physical activity or contact sports Alkaline urine dissolves RBC casts
WBCs	WBCs may originate from anywhere in the genitourinary tract	0-4/HPF	 >50/HPF indicates acute bacterial infection within urinary tract (perform urine culture) All renal diseases Cystitis or prostatitis Chronic pyelonephritis (PN) 	Strenuous exercise Vaginal discharge- need clean catch
WBC casts	Always come from the kidney tubules Indicates renal parenchymal infection	Zero casts	PN (most common cause)Occasionally acute GN	
Epithelial cells	Cells from the kidneys, bladder or urethra and vagina (squamous)	0-2/HPF (renal) Squamous are common	Acute tubular damageAcute GN	

	Discussion	Normal	Clinical implications	Interfering factors
Epithelial	Caused by the cast-off tubule cells in	Zero	Nephrosis	
cell casts	the kidney that slowly degenerates.		• GN	
	Will appear in large numbers when			
	there is damage to tubule epithelium			
Bacteria	Increased amounts are seen with renal	Small amounts	20 or more bacteria per high	Non-clean catch
	and urinary tract infections	in non-clean	powered microscope field may	
		catch	indicate a UTI (do urine culture)	
Yeast	Usually indicates vaginal	Zero	In males: immunosupression	Non-clean catch
	contamination			
Hyaline	Formed from precipitation of protein	0-2/LPF	non-pathological, form after exercise	
casts	within the tubules. Their presence		or in concentrated or highly acidic	
	depends on flow of urine, urine pH and		urine	
	if present degree of proteinuria.		With proteinuria Indicates possible	
	Usually non pathological		damage to glomerular membrane,	
			which permits leakage of proteins:	
			Nephritis	
			Malignant HTN	
			Chronic renal disease	

Urine Crystals May present with no symptoms or are associated with kidney stone formation. The type of crystal formed varies with urine pH.

Type of crystal	Ph of urine	Clinical implication	
Uric acid	5.0-6.5	gout, acute febrile conditions, chronic nephritis	
Amorphous urates, sodium urate	5.0-6.5	salts of Na+, K+, Mg++, Ca++; normal	
Calcium oxalate	Up to pH 7.5	Fat digestion problems, ethylene glycol poisoning, DM, liver disease, severe renal disease, ingestion of oxalate-rich foods	
Cystine	5.0-6.5	pathological ; indicates an inherited metabolic condition	
Leucine	5.0-6.5	pathological ; maple syrup or oathouse urine disease, liver disease	
Tyrosine	5.0-6.5	pathological; tyrosinosis, Oathouse urine disease, liver disease	
Hippuric acid	5.0-6.5	no significance	
Cholesterol	5.0-6.5	indicates excessive tissue breakdown - nephrotic syndrome, chyluria (fat in urine), filariasis, tumors	
Triple phosphates	7.5-9.0	ammonium-magnesium-phosphate - with urinary calculi, chronic pyelitis, chronic cystitis, BPH with urinary retention	
Amorphous phosphates	7.5-9.0	similar to amorphous urates ; no significance	
Calcium carbonate	7.5-9.0	no significance	
Calcium phosphate	7.5-9.0	may form calculi	
Ammonium urate	7.5-9.0	found with bacterial infection if in freshly voided urine	

Urine Dipstick Results form

Client's Name:_____

Practitioner:_____

Pathology Scree	Pathology Screening With Reagent Test Strip Date:				
TEST	NORMAL		ABNORM	AL FINDINGS	6
Color	Straw to amber	Colorless	red green/yello	ow orange	brown
Turbidity	Clear to hazy	Cloudy	very cloudy	mucous	
Volume	1500 ml	< 800ml (oligu	uria)	> 2400ml	(polyuria)
Glucose	Negative	+1	+2	+3	+4
Bilirubin	Negative	+1	+2	+3	
Ketones	Negative	+1	+2	+3	
Blood	Nogativo	Hemolyzed:	+1 (5-10) +2 (10-2	25) +3 (25-50)	+4 (>50)
Вюба	Negative	Non-heme.:	+1 (5-10) +2 (10-2	25) +3 (25-50)	+4 (>50)
Protein	Negative	Trace (5-20m	g) +1 (30mg) +2 (10	0mg) +3 (300mg	J) +4
Urobilinogen	Trace	+1	+2	+3	+4
Nitrites	Negative	Positive			
Leukocytes	Negative	+1 (10-25)	+2 (25-75)	+3 (>75)	

Pathology Screening With Reagent Test Strip Date:					
TEST	NORMAL		ABNORMA	L FINDINGS	6
Color	Straw to amber	Colorless	red green/yellow	orange	brown
Turbidity	Clear to hazy	Cloudy	very cloudy	mucous	
Volume	1500 ml	< 800ml (oligu	uria)	> 2400ml	(polyuria)
Glucose	Negative	+1	+2	+3	+4
Bilirubin	Negative	+1	+2	+3	
Ketones	Negative	+1	+2	+3	
Blood	Negative	Hemolyzed:	+1 (5-10) +2 (10-25) +3 (25-50)	+4 (>50)
Вюби	negative	Non-heme.:	+1 (5-10) +2 (10-25) +3 (25-50)	+4 (>50)
Protein	Negative	Trace (5-20m	g) +1 (30mg) +2 (100n	ng) +3 (300mg	J) +4
Urobilinogen	Trace	+1	+2	+3	+4
Nitrites	Negative	Positive			
Leukocytes	Negative	+1 (10-25)	+2 (25-75)	+3 (>75)	

Pathology Scree	Pathology Screening With Reagent Test Strip Date:				
TEST	NORMAL		ABNORMA	L FINDINGS	5
Color	Straw to amber	Colorless	red green/yellow	orange	brown
Turbidity	Clear to hazy	Cloudy	very cloudy	mucous	
Volume	1500 ml	< 800ml (oligu	uria)	> 2400ml	(polyuria)
Glucose	Negative	+1	+2	+3	+4
Bilirubin	Negative	+1	+2	+3	
Ketones	Negative	+1	+2	+3	
Blood	Negative	Hemolyzed:	+1 (5-10) +2 (10-25	6) +3 (25-50)	+4 (>50)
BIOOU	Negalive	Non-heme.:	+1 (5-10) +2 (10-25) +3 (25-50)	+4 (>50)
Protein	Negative	Trace (5-20m	g) +1 (30mg) +2 (100r	ng) +3 (300mg	j) +4
Urobilinogen	Trace	+1	+2	+3	+4
Nitrites	Negative	Positive			
Leukocytes	Negative	+1 (10-25)	+2 (25-75)	+3 (>75)	

In–Office Lab Testing Functional Terrain Analysis

Quick Reference Guide

Dicken Weatherby, N.D.

......

Bear Mountain Publishing • Jacksonville, OR

In-Office Lab Testing- Functional Terrain Analysis Quick Reference Guide

© 2002 BY RICHARD WEATHERBY, N.D. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system without written permission from the authors, except for the inclusion of quotations in a review.

Bear Mountain Publishing 1-541-899-1522

Warning - Disclaimer

Bear Mountain Publishing has designed this book to provide information in regard to the subject matter covered. It is sold with the understanding that the publisher and the authors are not liable for the misconception or misuse of information provided. The purpose of this book is to educate. It is not meant to be a comprehensive source for diagnostic testing, and is not intended as a substitute for medical diagnosis or treatment, or intended as a substitute for medical counseling. Information contained in this book should not be construed as a claim or representation that any treatment, process or interpretation mentioned constitutes a cure, palliative, or ameliorative. The interpretation is intended to supplement the practitioner's knowledge of their patient. It should be considered as adjunctive support to other diagnostic medical procedures.

Printed in the United States of America

How to Order

For mail orders call Bear Mountain Publishing in the United States at 541-899-1522, e-mail **info@BloodChemistryAnalysis.com** or online at **http://www.BloodChemistryAnalysis.com**

In-Office Lab Testing Assessment Patterns

Introduction

This section focuses on the patterns or combinations that exist between 2 or more elements and the diagnostic information that can be found with such an analysis.

When analyzing the patterns it might be useful to look back at each of the individual component.

The following is a glossary of terms that are used in describing some of these patterns:

Digestion: The breakdown of food particles in the GI tract **Absorption**: Passage of food particles across the intestinal mucosa **Assimilation**: Nutrients are assimilated into the blood stream **Utilization**: Passage of nutrients from the blood through the cell membrane

- 1. Assimilation and digestion
- 2. Acid/Alkaline Assessment
- 3. Electrolyte assessment
- 4. Calcium and mineralization
- 5. Macronutrient Maldigestion Patterns
- 6. Urine bilirubin with urine urobilinogen levels

PATTERN	INTERPRETATION	CLINICAL IMPLICATIONA
↑ Indican ↑ Sediment	Hypochlorhydria Pancreatic Insufficiency Leaky Gut Syndrome	 High indican levels are a reflection of protein mal-digestion and an excess of undigested food particles. Both of these are signs of hypochlorhydria. High sediment reflects poor breakdown of the absorbed nutrients due to leaky gut syndrome or pancreatic insufficiency (lack or decreased activity of digestive enzymes). Patients with this pattern may inform you that their appetite is extremely high and that they eat even when they are not hungry.
↑ Indican ✓ Sediment	Maldigestion Malabsorption	This pattern indicates poor digestion and absorption of nutrients across the gut wall into the blood and cell. There may be damage to the small intestine mucosa, as a result of a bacterial overgrowth or other infection, causing decreased permeability or a reduced intestinal mucosal surface area. One of the symptoms of this might be an excessive appetite. The maldigestion may be from hypochlorhydria or pancreatic insufficiency.
N indican ✔ Sediment	Malabsorption Deficient Dietary intake	This pattern indicates malabsorption without maldigestion. There may also be a relatively deficient dietary intake as a result of poor diet or a relative reduction in food intake. There may be damage to the small intestine mucosa.
N indican ∱ Sediment	Leaky Gut Syndrome Vitamin/mineral deficiencies	This pattern indicates good digestion but an increased permeability. With increased sediment there is evidence of abnormal metabolites being absorbed through a leaky gut. The increase in abnormal metabolites may be due to a deficiency in minerals and vitamins that act as co-enzymes to the enzymatic processes of digestion. This is a pattern often seen in people who are eating large amounts of one food group
↑ Indican ↑ Calcium	Hypochlorhydria	This pattern is associated with poor digestion, especially proteins, due to an inability to produce enough acidity in the stomach i.e. Hypochlorhydria. Since half of the circulating calcium is bound to protein, a protein deficiency resulting from an HCL deficiency could increase the ionized (diffusible) calcium, which is readily excreted in the urine.
↑ Indican ↓ Calcium	Lowered systemic pH Bicarbonate deficiency ↑ Phosphorous loss	This pattern may suggest a high loss of phosphorous due to increased systemic acidity. This may be result from a deficiency in bicarbonate buffers. There is decreased calcium because it is being used to buffer excess hydrogen ions in the extracellular fluid.

Acid/Alkaline Assessment

PATTERN	INTERPRETATION	CLINICAL IMPLICATIONS
 ↑ Resp. rate ◆ Breath hold ◆ Urine pH ↑ Saliva pH 	Metabolic Acidosis	 Alkaline saliva- the respiratory system kicks in by increasing the rate and depth of breathing to blow off as much CO2 as possible. This will lower the carbonic acid levels in the body leading to an alkaline saliva. Acidic urine- this represents the kidney excreting H+ Increased respiratory rate- The body is attempting to blow off CO2 to decrease carbonic acid levels Decreased breath holding time- acidosis causes a decreased oxygen transport and uptake, thus leading to a decreased ability to hold ones breath
 ↑/ ♥ Resp. rate ♥ Breath hold ♥Urine pH ♥ Saliva pH 	Respiratory Acidosis	 Acid saliva- due to the increased levels of CO2 and carbonic acid Acidic urine- due to the kidney excretion of H+ Increased respiratory rate- The body is attempting to blow off CO2 to decrease carbonic acid levels that have built up as a result of the hypoventilation, which is a hallmark of respiratory acidosis Decreased breath holding time- acidosis causes a decreased oxygen transport and uptake, thus leading to a decreased ability to hold ones breath
 ↑/♥ Resp. rate ↑ Breath hold ↑ Urine pH ↑ Saliva pH 	Respiratory Alkalosis (Also known as stress or anxiety alkalosis)	 Alkaline saliva- due to the increased loss of CO2 and carbonic acid Alkaline urine- due to the kidney retention of H+ The respiratory rate may be increased or decreased- The body is attempting to blow off CO2 to decrease carbonic acid levels but the respiration patterns are often irregular Increased breath holding time- alkalosis causes an increased oxygen transport and uptake, thus leading to an increased ability to hold ones breath
 ✔ Resp. rate ↑ Breath hold ↑ Urine pH ✔ Saliva pH 	Metabolic alkalosis	 Acidic saliva- a slowing of the respiration rate will cause more carbonic acid in the extracellular fluids leading to an acidic saliva Alkaline urine- due to kidney excretion of bicarbonate and retention H+ Decreased respiratory rate- due to the suppression of the respiratory centers (the body is attempting to lessen the blow off CO2 to increase carbonic acid levels) Increased breath holding time- alkalosis causes an increased oxygen transport and uptake, thus leading to an increased ability to hold ones breath

Electrolyte assessment

PATTERN	INTERPRETATION	CLINICAL IMPLICATIONS
 Adrenal score ↓ Urine chloride ↑ Urine pH 	Excess alkaline reserves	The extracellular fluid is alkaline. Large amounts of chloride are reabsorbed resulting in a decreased urine chloride. The renal tubules release bicarbonate and hold onto H+ in order to buffer the excess alkalinity. The urine becomes alkaline. This is a normal variation.
 ✔ Adrenal score ▲ Urine chloride ↓ Urine pH 	reserves I bicarbonate in order to butter the acidity. Urine becomes more acidic. Chloride ion	
 Adrenal score ↓ Urine chloride ↓ Urine pH 	Potassium deficiency Salt deficiency	The blood is deficient in potassium, from eating the standard American diet, too much refined sugar or diuretic use, produces this pattern. The body is excreting H+ and retaining chloride, which leads to an acidic urine. Because of the low pH the body excretes more potassium. If patient has this pattern and reports that their urine output is low consider sodium deficiency because the body is retaining chloride and excreting H+.
 ✓ Adrenal score ↑ Urine chloride ↑ Urine pH ↑ Calcium 	Excess salt	In this pattern the body is excreting bicarbonate and chloride as well as calcium. This pattern is seen in people who consume excess amounts of salt.
 ✓ Adrenal score ↑ Urine chloride ↑ Urine pH ✓ Calcium 	Excess potassium	This pattern is similar but different from the one above. In this pattern the body is excreting bicarbonate and chloride, but retaining calcium. This pattern is seen in salt deficient diets or people who are taking too much potassium.

Calcium and mineralization

PATTERN	INTERPRETATION	CLINICAL IMPLICATIONS	
⊎ Urine pH ⊎ Calcium	Excess stomach acid	 Excess stomach acid- possible causes often associated with this pattern are: Very high protein diet Magnesium deficiency, because magnesium neutralizes HCI in the stomach. Medications Taking Betaine HCI Acid retention due to kidney disease Ketosis from fasting or diabetes 	
⊎ Urine pH ↑ Calcium	Complex carbohydrate deficiency Alkaline mineral deficiency	Complex carbohydrate deficiency associated with the standard American Diet i.e. fast food diet high in sugar and protein (↑ sugar can cause ↑ calcium in the urine) Alkaline minerals are being depleted in order to alkalinize the cell. A pattern seen in respiratory acidosis and respiratory conditions such as asthma and emphysema. You may see this pattern after an acute asthma attack.	
↓ Urine pH↓ Calcium	Hypochlorhydria	 Hypochlorhydria can cause poor protein digestion leading to low calcium levels since half of the calcium is bound to protein. It is also suggestive of the following: Poor protein and calcium digestion and transportation due to Hypochlorhydria Poor reserve levels of calcium in the bones Fatty acid deficiency. 	
↑ Urine pH ↑ Calcium	Protein deficiency	This pattern can be due to protein deficiency due to low protein diet or poor protein absorption. Use of protease to increase absorption may be useful. The increase in calcium may be due to the intake of a non-ionizing form of calcium	
N Urine pH ✔ Calcium	Low calcium levels in body	May be caused by insufficient intake of calcium or other factors that affect calcium digestion, absorption and utilization. Most of the unabsorbed calcium will be excreted in the stool.	

Macronutrient Maldigestion Patterns

PATTERN	INTERPRETATION	CLINICAL IMPLICATIONS
 ↑ Adrenal score ↓ Urine chloride ↑ S.G. 	Protein maldigestion	This pattern indicates a difficulty in digesting protein either from a deficiency in protease enzyme or hypochlorhydria. This is associated with a loss of muscle mass, poor recovery time after exercise, hypoglycemia/blood sugar dysregulation, and poor utilization of calcium and magnesium, which must bind with amino acids to be fully assimilated. People with this pattern may also have intestinal mucosal integrity problems causing ileocecal valve problems, constipation and other lower bowel problems. This may be due to glutamine deficiencies.
 ↑ Adrenal score ↓ Urine chloride ↓ S.G. 	Fat maldigestion	This pattern indicates a difficulty in dealing with fats either from a deficiency in lipase enzymes or poor bile emulsification. Your patients may talk about having a fat intolerance. This is associated with a deficiency in essential fatty acids, fat soluble nutrient deficiencies and liver and/or gallbladder problems.
 ✓ Adrenal score ↑ Urine chloride ↑ S.G. 	Fiber and carbohydrate maldigestion	This pattern indicates fiber and carbohydrate maldigestion and metabolism, which may result from a deficiency in amylase or cellulase, or a high carbohydrate, low protein, low sodium and low fat diet. This pattern is associated with irritable bowel like symptoms, such as diarrhea. With this combination the pituitary increases the stimulation of ADH and GH to retain electrolytes. The patient may suffer from poor circulation, cold hands and feet, and a low sex drive.
 ✓ Adrenal score ↑ Urine chloride ✓ S.G. 	Sugar maldigestion	 This pattern is common in people who have problem digesting and handling sugar. Patients may consume large amounts of carbohydrates and say that they are sugar intolerant. This pattern is associated with the following conditions: Sugar handling difficulties Malabsorption, Decreased cell permeability Sugar intolerance may also lead to depression, insomnia, emotional instability, and panic attacks.

Urine bilirubin with urine urobilinogen levels

PATTERN	INTERPRETATION	CLINICAL IMPLICATIONS
↑ bilirubin ↑ Urobilinogen	Liver dysfunction	This pattern has its origin in the liver with possible hepatocellular dysfunction or partial obstruction
↑ Bilirubin N Urobilinogen	Biliary Stasis	This pattern is associated with more of a gallbladder origin either biliary stasis with congested bile or gall stones
Neg Bilirubin ↑ Urobilinogen	Hemolytic in origin	This pattern is more hemolytic in origin. There is an increase in red blood cell destruction due to hemolytic anemia, oxidative stress, ↑ xenotoxins.

Other patterns:

Increased Oxidative Stress	↑ Oxidata test
	Lingual ascorbic acid test
	↑ Urinary urobilinogen
	↑ Hemolysed blood in urine

CONDITIONS AND TERRAIN ASSESSMENT TESTS

CONDITION	HIGH	LOW
Adrenal hyperfunctioning	↑ Adrenal score	✓ Urine chloride
Adrenal hypofunctioning	↑ Urine chloride	✓ Adrenal score
Alkaline mineral insufficiency	 ↑ Saliva pH ↑ Calcium oxalate sediment ↑ Urine chloride 	 ✓ Saliva pH ✓ Adrenal score
Antioxidant insufficiency	↑ Oxidata test	✓ Lingual ascorbic acid
Bowel toxemia	↑ Indican	
Carbohydrate maldigestion	 ↑ Calcium phos. sediment ↑ Urine chloride ↑ Specific gravity ↑ Urine ketones 	 ↓ Urine pH ↓ Saliva pH ↓ Adrenal score
Complex carbohydrate deficiency	▲ Urine Calcium	✓ Urine pH
Deficient dietary intake	Normal Indican	
Dysbiosis	↑ Indican	
Electrolyte insufficiency	▲ Urine chloride	 ✓ Adrenal score ✓ Urine pH
Electrolyte stress	 ↑ Adrenal score ↑ Urine pH 	✓ Urine chloride
Essential fatty acid deficiency		✓ Saliva pH
Excess protein intake	 ↑ Indican ↑ Uric acid sediment ↑ Urine ketones 	 ↓ Urine calcium ↓ Urine pH

CONDITION	HIGH	LOW
Fat maldigestion	 ↑ Indican ↑ Calcium oxalate sediment ↑ Adrenal score 	 ↓ Urine pH ↓ Saliva pH ↓ Urine chloride ↓ Specific gravity
Gallbladder insufficiency	 ↑ Calcium oxalate sediment ↑ Urine Bilirubin 	
Hypochlorhydria	 ↑ Saliva pH ↑ Indican ↑ Uric acid sediment ↑ Urine chloride ↑ Urine pH 	 ✔ Adrenal score ✔ Urine calcium
Hypothyroidism, Subclinical		 ✓ Basal body temp ✓ Iodine ✓ Achilles return reflex
Immune dysfunction	↑ Urine pH	
lodine insufficiency		✓ Iodine
Kidney stress	 ↑ 1st AM Urine pH ↑ Urine chloride ↑ Oxidata test 	
Leaky gut syndrome	▲ Total sediment ▲ Indican	
Liver stress	 ↑ 1st AM Urine pH ↑ Urine bilirubin ↑ Urine ketones ↑ Urine urobilinogen 	
Low calcium levels		✓ Urine calcium
Low redox potential		
Malabsorption	 ↑ Indican ↑ Adrenal score 	 ✓ Saliva pH ✓ Total urine sediment ✓ Urine chloride

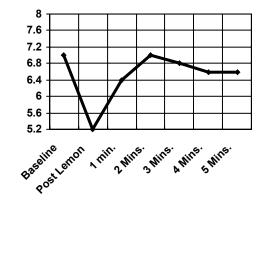
CONDITION	HIGH	LOW
Maldigestion	↑ Saliva pH	✓ Urine pH
	↑ Indican	
	↑ Oxidata test	
Metabolic acidosis	↑ Respiration rate	Breath holding time
	↑ Saliva pH	↓ Urine pH
Metabolic alkalosis	↑ Breath holding time	Respiration rate
	↑ Urine pH	
	↑ Calcium	
Oxidative stress	↑ Oxidata test	✓ Adrenal score
	↑ Urine chloride	
	↑ Urine bilirubin	
	↑ Urine urobilinogen	
	↑ Urine blood- hemolysed	
Pancreatic	↑ Total sediment	↓ Urine pH
insufficiency		✓ Saliva pH
Protein deficiency	↑ Urine pH	
	↑ Urine calcium	
Protein maldigestion	↑ Urine pH	
	↑ Indican	
	↑ Uric acid sediment	
	↑ Adrenal score	
	↑ Specific gravity	
<u> </u>	↑ Urine bilirubin	
Respiratory acidosis	▲ Respiration rate	
	↑ Urine calcium	Breath holding time
		✓ Saliva pH
Respiratory alkalosis	↑ Respiration rate	
	↑ Breath holding time	
	↑ Saliva pH	
	↑ Urine pH	

INDIVIDUAL TESTS

Acid-base Terrain

Tests used to identify patterns of acid/alkaline imbalance

▲ Breath hold	↑ Resp. Rate	↑ Urine pH	↑ Saliva pH
 Metabolic alkalosis Respiratory alkalosis 	 Metabolic acidosis Respiratory acidosis (compensation) Respiratory alkalosis (acute) Sympathetic stress 	 Bacterial infection Suseptibility to yeast and viruses Protein maldigestion Alkalosis (respiratory and metabolic) Calcium metabolism problems 	 Metabolic acidosis Respiratory alkalosis Maldigestion Hypochlorhydria Sympathetic dominance Alkaline mineral insufficiency Dental tartar

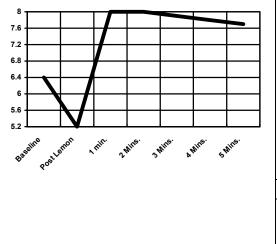

	✔ Resp. Rate		
 Metabolic acidosis Respiratory acidosis Anemia Antioxidant insufficiency Anxiety Stress 	 Metabolic alkalosis Respiratory acidosis	 Maldigestion Carbohydrate and fat	 Metabolic alkalosis Respiratory acidosis Malabsorption Carbohydrate
	(acute/primary cause) Respiratory alkalosis	maldigestion Pancreatic insufficiency Acidosis (respiratory and	maldigestion Pancreatic insufficiency EFA deficiency Fat digestion problems Alkaline mineral
	(Compensation)	metabolic) Inflammation Arthritis	insufficiency Dental caries

Identifying Imbalances in Secondary buffering systems

Dr. Bieler's salivary pH acid challenge

Normal patterns						Α	Ikaline Read	tion				
POST	3. Mins. A. Mi		pH imi the an- min up rar clir min he res	e initial s of 7.2 d mediately acid cha d takes a nutes to into the mb up to nutes ind althy min serves	rops y after allenge a few climb alkaline slow 7.6 at 5 licates heral	8 ¹ 90 ³		3 Mins. A Mins		reaction norm sudde acid i but th begin tende towar insuff Miner are in buffet are n the pl as the curve		on to a se of ody he a fift ral The res the ems o drive alline
Baseline Lemon	1	2	3	4	5	Baseline	Lemon	1	2	3	4	5
7.2 5.2	6.4	7.0	7.2	7.4	7.6	7.2	5.2	6.6	7.0	7.2	7.2	7.2

2. Mineral insufficiency



In the mineral insufficiency pattern the initial salivary pH of 7.2 drops immediately with the acid challenge and takes a few minutes to climb up to the alkaline range. The slow climb up to a pH of 6.8 at 2 minutes starts to look like the normal curve, but it fails to completely alkalinize the saliva. This is an indication of mineral insufficiency. There are mineral reserves present but they are not replete enough to fully buffer the acidity.

The more the curve begins to drop the weaker the reserves are.

Baseline	Lemon	1	2	3	4	5
7.0	5.2	6.4	7.0	6.8	6.6	6.6

3. Hypersympathetic overload with mineral insufficiency

Starting point is acidic at 6.4. This pattern is already displaying signs of buffering problems before the test has started.

The alkaline spike after 1 minute indicates that ammonia is being used as a buffer. Ammonia, and not minerals, is being released. You may notice the ammonia response in the urine, which may have an ammonia smell.

This patient will complain of being wiped out and fatigued. They probably do not sleep well, are stressed and complain of feeling depleted. Any types of stress reduction techniques are essential for these people along with adrenal restoration. They often complain of not being able to relax. Notice also that the curve does not come down very quickly. The ammonia is quite a long term buffer.

Baseline	Lemon	1	2	3	4	5
6.4	5.2	8	8	7.9	7.8	7.7

4. Hypersympathetic overload with signs of mineral sufficiency

8 7.6 7.2 6.8 6.4 6 5.6 5.2 8858 ¹⁰⁰ n ⁱⁿ	2 MILES A MILES & MILES	still the a	mmonia spike but	after 2 minutes the		netic patient. There is eral reserve activity nal range.
Baseline	Lemon	1	2	3	4	5
6.8	5.2	8.0	7.6	7.4	7.4	7.4

5. Loss of alkaline reserves	There is pro	bably cell rig rning urine p	idity and the H may be all	of buffering c kidneys are p kaline. Check stry screen ar	probably no lo the urine dip	onger reclaim	
5.2 5.2 Baseline Lenon , run 2 Mine 3 Mine 4 Mine 5 Mine.	Baseline 6.0	Lemon 5.2	1 6.0	2 6.0	3 6.0	4 6.0	5 6.0
₹ ⁰							

Gastrointestinal Terrain

▲ Bowel Toxicity Test	▲ Sediment	Alkaline Gastro-test	↑ Urine Calcium
 Bowel toxemia Dysbiosis Hypochlorhydria Maldigestion Malabsorption High protein intake 	Total: • Poor assimilation • Pancreatic insufficiency • Leaky Gut Syndrome Calcium phosphate: • Carbohydrate, sugar and starch maldigestion Uric acid: • Protease deficiency • Hypochlorhydria • Protein maldigestion • Excess protein intake Calcium oxalate: • Fat maldigestion • Lipase deficiency • Poor fat emulsification • Calcium and magnesium deficiency • Malabsorption	 Hypochlorhydria Achlorhydria (>5.0) Use bicarbonate challenge to test acid reserves 	 Excess calcium supplementation Calcium mobilized from bone High refined sugars in diet Hyperparathyroidism Urine calcium Low calcium in body Excess protein intake Malabsorption Hypoparathyroidism

Hormonal Terrain

High Urine chloride/Low adrenal test score (1-13)	Low urine chloride/High adrenal test score (>25)
Adrenal hypofunctioning	Adrenal hyperfunctionining
Hypochlorhydria	Electrolyte stress/increased toxicity
Kidney stress	Malabsorption syndrome
Alkaline mineral insufficiency	Diarrhea/excess vomiting
Oxidative stress	_

Oxidative Stress Terrain

Low Redox	+2 Oxidative stress	+3 Oxidative stress
 Loss of high energy electron intermediates Low electron potential Susceptible to degenerative diseases Premature tissue aging 	 Liver stress Kidney stress Pancreas stress Blood sugar problems Adrenal stress Lymphatic congestion Fatigue 	 Lymphatic stress Xenotoxins Greatly reduced ATP production Maldigestion Blood sugar dysregulation